Skip to content

TensorFlow 2.0

Jupyter Notebook on Lawrencium GPU node

  • https://sites.google.com/a/lbl.gov/high-performance-computing-services-group/getting-started/jupyter-notebook
$ srun  -N 1 -p es1 -A $ACCOUNT -t 1:0:0 --gres=gpu:2 -n 4 -q es_normal --pty bash
$ module load ml/tensorflow/2.0-py36
$ start_jupyter.py

Login from visualization node via VNC Viewer:

  • https://sites.google.com/a/lbl.gov/high-performance-computing-services-group/getting-started/remote-desktop
import sys
import numpy as np
import tensorflow as tf
from datetime import date
from datetime import datetime
print(sys.version)

3.6.8 |Anaconda custom (64-bit)| (default, Dec 30 2018, 01:22:34) [GCC 7.3.0]

print(tf.compat.v1.VERSION)

2.0.0

print(date.today())

2020-05-11

Test if TF can access a GPU

tf.test.is_gpu_available(
    cuda_only=False,
    min_cuda_compute_capability=None
)

True

tf.test.gpu_device_name()

'/device:GPU:0'