TensorFlow 2.0
Jupyter Notebook on Lawrencium GPU node
- https://sites.google.com/a/lbl.gov/high-performance-computing-services-group/getting-started/jupyter-notebook
$ srun -N 1 -p es1 -A $ACCOUNT -t 1:0:0 --gres=gpu:2 -n 4 -q es_normal --pty bash
$ module load ml/tensorflow/2.0-py36
$ start_jupyter.py
Login from visualization node via VNC Viewer:
- https://sites.google.com/a/lbl.gov/high-performance-computing-services-group/getting-started/remote-desktop
import sys
import numpy as np
import tensorflow as tf
from datetime import date
from datetime import datetime
print(sys.version)
3.6.8 |Anaconda custom (64-bit)| (default, Dec 30 2018, 01:22:34) [GCC 7.3.0]
print(tf.compat.v1.VERSION)
2.0.0
print(date.today())
2020-05-11
Test if TF can access a GPU
tf.test.is_gpu_available(
cuda_only=False,
min_cuda_compute_capability=None
)
True
Print the name of the GPU device
tf.test.gpu_device_name()
'/device:GPU:0'